Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax Quinquefolium adventitious root
نویسندگان
چکیده
Here, we combine elicitors and transcriptomics to investigate the inducible biosynthesis of the ginsenoside from the Panax quinquefolium. Treatment of P. quinquefolium adventitious root with methyl jasmonate (MJ) results in an increase in ginsenoside content (43.66 mg/g compared to 8.32 mg/g in control group). Therefore, we sequenced the transcriptome of native and MJ treated adventitious root in order to elucidate the key differentially expressed genes (DEGs) in the ginsenoside biosynthetic pathway. Through DEG analysis, we found that 5,759 unigenes were up-regulated and 6,389 unigenes down-regulated in response to MJ treatment. Several defense-related genes (48) were identified, participating in salicylic acid (SA), jasmonic acid (JA), nitric oxide (NO) and abscisic acid (ABA) signal pathway. Additionally, we mapped 72 unigenes to the ginsenoside biosynthetic pathway. Four cytochrome P450s (CYP450) were likely to catalyze hydroxylation at C-16 (c15743_g1, c39772_g1, c55422_g1) and C-30 (c52011_g1) of the triterpene backbone. UDP-xylose synthases (c52571_g3) was selected as the candidate, which was likely to involve in ginsenoside Rb3 biosynthesis.
منابع مشابه
Transcriptome Analysis of Methyl Jasmonate-Elicited Panax ginseng Adventitious Roots to Discover Putative Ginsenoside Biosynthesis and Transport Genes
The Panax ginseng C.A. Meyer belonging to the Araliaceae has long been used as an herbal medicine. Although public databases are presently available for this family, no methyl jasmonate (MeJA) elicited transcriptomic information was previously reported on this species, with the exception of a few expressed sequence tags (ESTs) using the traditional Sanger method. Here, approximately 53 million ...
متن کاملEndophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture.
Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endop...
متن کاملField cultivation and in vitro cultures, root-forming callus cultures and adventitious root cultures, of Panax quinquefolium as a source of ginsenosides.
The content of six ginsenosides (Rb1, Rb2, Rc, Rd, Rg1, and Re) was studied in the roots of field-grown plants, as well as in root-forming callus cultures and adventitious root cultures of Panax quinquefolium using high-performance liquid chromatography (HPLC). The highest level of saponins was isolated from root hairs (128 mg/g dry weight). The examined in vitro culture synthesized all identif...
متن کاملInvestigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng
BACKGROUND The effect of methyl jasmonate (MJ) on ginsenoside production in different organs of ginseng (Panax ginseng Meyer) was evaluated after the whole plant was dipped in an MJ-containing solution. MJ can induce the production of antioxidant defense genes and secondary metabolites in plants. In ginseng, MJ treatment in adventitious root resulted in the increase of dammarenediol synthase ex...
متن کاملTranscriptome profiling and comparative analysis of Panax ginseng adventitious roots
BACKGROUND Panax ginseng Meyer is a traditional medicinal plant famous for its strong therapeutic effects and serves as an important herbal medicine. To understand and manipulate genes involved in secondary metabolic pathways including ginsenosides, transcriptome profiling of P. ginseng is essential. METHODS RNA-seq analysis of adventitious roots of two P. ginseng cultivars, Chunpoong (CP) an...
متن کامل